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Abstract. Properties of ferromagnetic spin-1 Bose gases above and at the temperature of Bose-Einstein
condensation are studied in the presence of a magnetic field. The equation of state is given in a mean-field
approximation. It is found that there exists a critical magnetic field and below that two phases coexist with
different particle densities. The stability of the system is also investigated with the help of the susceptibility
matrix. The dynamics of the system is worked out in the Random Phase Approximation and the soft mode
corresponding to the critical point is given.

PACS. 03.75.Mn Multicomponent condensates; spinor condensates – 03.75.Hh Static properties of con-
densates; thermodynamical, statistical and structural properties – 67.40.Db Quantum statistical theory;
ground state, elementary excitations

1 Introduction

The realization of Bose-Einstein condensation (BEC) in
magnetic traps of dilute, alkali metal atoms [1,2] has given
new motivations to the investigation of the properties of
many-particle Bose systems. With the appearance of op-
tical trapping methods [3–7] it became possible to confine
simultaneously all the mf ∈ {−f . . . f} Zeeman sublevels
of the (hyperfine) spin-f atom, which initiated the experi-
mental studies of the magnetic properties of dilute, spinor
Bose gases. The scope of the theoretical investigation of
the properties of spinor Bose gases is rather wide-ranging,
aiming at a lot of novel and interesting phenomena, such
as the topological structure of the condensate wavefunc-
tion [8,9], the multiple condensation due to the conserva-
tion of the total magnetization [10,11], the properties of
elementary excitations [12–14], and a lot more.

Another interesting question is the interplay between
Bose statistics and the magnetic properties of the spinor
gas [15–19], moreover since the tendency towards ferro-
magnetic ordering is already present in the case of the
ideal Bose gas, due to quantum correlations alone. The
subject of this paper is to further analyze this interplay
for the homogeneous spin-1 Bose gas in external mag-
netic field and with a ferromagnetic pairwise interaction.
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The magnetic transition before the Bose-Einstein conden-
sation was studied already in the absence [15] and also
in the presence [19] of an external magnetic field assum-
ing a single valued density. We concentrate on the fact,
that the appearance of a first order phase transition of
the gas can result in a phase separation leading to two co-
existing phases with different particle densities and mag-
netizations. The single valued, homogeneous density can
be obtained only in the “rigid” limit, when the compress-
ibility of the system is zero, and the coexisting phases
have the same density. The analysis is carried out above
and at the Bose-Einstein condensation temperature in a
mean-field calculation. Our aim is to study the behavior of
the system determined mutually by the density and spin
degrees of freedom, both from the static and dynamical
points of view for temperatures above and at the temper-
ature of Bose-Einstein condensation as a function of the
magnetic field.

The outline of the paper is as follows. In Section 2,
the system is specified with the help of its Hamilton op-
erator. In Section 3, the equation of state of the homoge-
neous, ferromagnetic spin-1 Bose gas in the framework of
the Hartree approximation is revisited. The resulting set
of equations are solved for the particle density, the mag-
netization density, while keeping constant the volume of
the system and the intensive parameters, the temperature,
the chemical potential and the magnetic field. The phase
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diagram is given for temperature values above and at the
Bose-Einstein condensation temperature. The found rich
structure of the phase diagram is analyzed and its special
points are discussed. In Section 4, a stability analysis is
performed. Section 5, discusses the phase separation dur-
ing the first order transition. In Section 6, the collective
dynamics of the system is studied in the framework of
the Random Phase Approximation. Finally Section 7, is
devoted for further discussions.

2 The model

The Hamilton operator of the low temperature, homoge-
neous, dilute, spin-1 Bose gas in magnetic field takes the
following form [8,9]:

H =
∑

k
r,s

[
(ek − µ)δrs − gµBB (Fz)rs

]
a†

r(k)as(k)

+
1

2V

∑
k1+k2=k3+k4

r,s,r′,s′

a†
r′(k1)a†

r(k2)V r′s′
rs as(k3)as′(k4), (1)

where ek = �
2k2/2M is the kinetic energy of an atom

(with M the mass of an atom), µ is the chemical poten-
tial, g is the gyromagnetic ratio, µB is the Bohr magneton,
and B is the modulus of the homogeneous magnetic field
pointing towards the direction of the z -axis, V is the vol-
ume of the system. The operators a†

r(k) and ar(k) create
and destroy one-particle plane wave states with momen-
tum k and spin projection r. The spin index r refers to
the eigenvalue of the z -component of the spin operator
and can take values from +, 0,−. In this basis the spin
operators are given by:

Fx =
1√
2




0 1 0
1 0 1
0 1 0


 , Fy =

1√
2




0 −i 0
i 0 −i
0 i 0


 ,

Fz =




1 0 0
0 0 0
0 0 −1


 . (2)

In equation (1) the pairwise interaction is given by mo-
mentum independent s-wave scattering, with the following
tensorial structure:

V r′s′
rs = cnδrsδr′s′ + cs(F)rs(F)r′s′ , (3)

where cn and cs are coupling constants related to the
s-wave scattering lengths, a0 and a2, in the total spin
channel 0 and 2, respectively, in the following way:

cn =
4π�

2

M

a0 + 2a2

3
, (4a)

cs =
4π�

2

M

a2 − a0

3
. (4b)

In a so-called ferromagnetic system, such as studied here,
a0 > a2, and correspondingly cs < 0. For such a system
ferromagnetic ordering is favored at low enough tempera-
tures even in the absence of a magnetic field [8,9].

The Hamiltonian (1) has an U(1) × SO(3) symmetry
and therefore the total particle number and the total spin
are conserved. However it is practical to carry out calcula-
tions in the grand-canonical ensemble while ensuring the
conservation of the above quantities with the introduction
of two Lagrange multipliers, namely the chemical poten-
tial µ, already incorporated in equation (1) and the mul-
tiplier η, which shows up in the modified Hamiltonian as
η

∑
k(Fz)rsa

†
r(k)as(k) [7]. The terms containing η and B

can be added to a modified magnetic field B′ = B+η/gµB.
We consider the magnetic field in equation (1) in this sense
and omit the prime for notational simplicity.

3 Equation of state

The equation of state of the spin-1 Bose gas can be ob-
tained in different approximations. The Hartree approx-
imation [12,19] gives a set of equations for the particle
and magnetization density of atoms in the gas and it is
equivalent with a mean-field theory in a “molecular field”
approach.

The first equation gives the particle density

n = n′
+ + n′

0 + n′
−, (5)

where n = N/V is the density of the particles in the gas,

n′
r =

∑
k

n′
k,r (6a)

is the density of non-condensed atoms in spin projections
r = +, 0,− and

n′
k,r =

1

eβεHk,r − 1
, (6b)

εHk,r = ek − µ + cnn + r(csm − gµBB). (6c)

The density of condensed atoms is assumed zero through-
out this paper. In equation (6c) m is the magnetization
density [see Eq. (7)] and β = 1/kBT is the inverse temper-
ature. The term rcsm plays the same role as the “molec-
ular field” in conventional ferromagnetic theories. The
closing equation is written for the magnetization density,
expressed in the following form:

m = n′
+ − n′

−. (7)

Equations (5), (6) and (7) form a closed set of equations,
which can be solved self-consistently to the particle and
magnetization density in knowledge of the temperature,
magnetic field and chemical potential.
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Fig. 1. Figures (a) and (c)
show the particle density
and magnetization density
as functions of the chemi-
cal potential for several val-
ues of the magnetic field,
while figures (b) and (d)
show the same quantities as
functions of the magnetic
field for several values of the
chemical potential. Particle
density and magnetization
density are given in units

of n
(id)
c , the chemical poten-

tial in units of kBT0 and
the magnetic field in units of
kBT0/gµB. The figures are
plotted for εn = 90 and
εs = 0.9.

It can be easily seen that under the scale
transformation

T̃ = γT, (8a)

B̃ = γB, (8b)
µ̃ = γµ, (8c)

ñ = γ
3
2 n, (8d)

m̃ = γ
3
2 m, (8e)

c̃n = γ− 1
2 cn, (8f)

c̃s = γ− 1
2 cs. (8g)

the equations of state (5), (6), (7) are invariant. A scal-
ing parameter T0 can be introduced, defined for tempera-
ture T by the expression

T = 1.425 T0. (9)

The numerical factor has been chosen such a way that
n = n

(id)
c line be at about the middle of the Figure 1a. This

choice is also motivated by a later discussion in Section 5.
Here n

(id)
c is the critical density of the spin-1 ideal Bose

gas at zero magnetic field, as given by

n(id)
c =

3Γ
(

3
2

)
ζ

(
3
2

)
(2π)2λ3

0

, (10)

where Γ(s) is the standard gamma-function and λ0 is de-
fined through the thermal wavelength λ(T ) = �/

√
2MkBT

with λ0 = λ(T0).

It is convenient to define the following dimensionless
parameters

εn =
cnn

(id)
c

kBT0
, (11a)

εs =
|cs|n(id)

c

kBT0
. (11b)

Solutions of the equations of state (5–7) are shown Fig-
ure 1 for εn = 90, εs = 0.9. In Figures 1a and 1c the par-
ticle density and magnetization density are plotted versus
the chemical potential for several values of magnetic field.
For relative high magnetic fields there is only one value
of the particle density and the magnetization density for
a given value of the chemical potential. By decreasing the
magnitude of the magnetic field a critical point shows up
at Bc and µc. If B is smaller then Bc there is a region of
the chemical potential, where equations of state give more
than one solution for particle density and magnetization,
representing a first order transition.

One can make a similar discussion regarding Figures 1b
and 1d with reversing the roles of the chemical poten-
tial and magnetic field. The critical point is of course the
same and the first order transition will occur if the chem-
ical potential is larger than its critical value.

By solving the equations of state, one can find the
full phase diagram of the system in the (µ, B, T ) space,
which is plotted in Figure 2 for cn/|cs| ≈ 151.5 in arbi-
trary units. The magnetic transition is of first-order in the
shaded surface and the blue line indicates the magnetic
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Fig. 2. The phase diagram of the spin-1 Bose gas performed
in the (µ, B, T ) space for cn/|cs| ≈ 151.5. The quantities µ,
T , B are given in arbitrary units. The magnetic transition is
first-order in the shaded surface and the blue line indicates the
magnetic critical points. The red surface is related to BEC and
the red line locates the tricritical points of the BEC. Between
the points (µ = 0, B = 0, T = 0) and (µ(3), B(3), T (3)) the red
and blue lines run together. In the region bounded by the red
line and B = 0 line the BEC is first-order, while outside it is
continuous. The tricritical point of the magnetic transition is
at (µ(1), B = 0, T (1)).

critical points. There is another surface colored to red,
which is related to BEC. The red line locates the tricriti-
cal points of the BEC and is common for the two surfaces.
Moreover between the points (µ = 0, B = 0, T = 0) and
(µ(3), B(3), T (3)) the red and blue lines run together. The
region bounded by the red line and B = 0 line is common
for the two surfaces and the BEC is of first-order (as the
magnetic transition). Outside this region the two surfaces
separate and the red one is the location of the continuous
BEC-s. The magnetic transition also has a tricritical point
at (µ(1), B = 0, T (1)). For µ > µ(1) the blue line indicates
the points of the continuous magnetic transitions.

The calculations were carried out in a simple mean-
field theory, where csm can be conceived as a molecular
field. Starting, however, with a Hartree–Fock theory the
model cannot be formulated as a magnetic molecular field
theory. The arising most important difficulty is that it
leads to a first-order BEC even if it is believed to be con-
tinuous as in the scalar Bose gas.

4 Thermodynamical derivatives
and the stability matrix

After discussing the possible phases of the system, one
should raise a question concerning their stability. Investi-
gating this point it is convenient to introduce the following
matrix:

χ =




(
∂n
∂µ

)
T,B

(
∂n
∂B

)
T,µ(

∂m
∂µ

)
T,B

(
∂m
∂B

)
T,µ


 . (12)

A lengthy but straightforward calculation leads to the ex-
pressions (13)

(
∂n
∂µ

)
T,B

= P+Q+R+cs[(P+R)Q+4PR]
[1+cn(P+Q+R)][1+cs(P+R)]−cncs(P−R)2 , (13a)

(
∂n
∂B

)
T,µ

= gµB
P−Q

[1+cn(P+Q+R)][1+cs(P+R)]−cncs(P−R)2 ,

(13b)(
∂m
∂µ

)
T,B

= P−Q
[1+cn(P+Q+R)][1+cs(P+R)]−cncs(P−R)2 , (13c)

(
∂m
∂B

)
T,µ

= gµB
P+R+cn[(P+R)Q+4PR]

[1+cn(P+Q+R)][1+cs(P+R)]−cncs(P−R)2 ,

(13d)

where

P =
βΓ

(
3
2

)
(2π)2λ3

F
(

1
2
, β [cnn − µ + (csm − gµBB)]

)
,

(14a)

Q =
βΓ

(
3
2

)
(2π)2λ3

F
(

1
2
, β[cnn − µ]

)
, (14b)

R =
βΓ

(
3
2

)
(2π)2λ3

F
(

1
2
, β[cnn − µ − (csm − gµBB)]

)
. (14c)

Here F (s, γ) is the Bose-Einstein integral with parameter
s and argument γ [20].

As it can be seen in Figure 1a, when B is large enough
the derivative of the n(µ) curve is always positive. De-
creasing the magnetic field below the critical value Bc the
curves have some part, where the derivative becomes neg-
ative. For smaller magnetic fields the negative derivative
of n(µ) passes into positive again in a small region of the
unstable part, but at this time the system is still unstable.
The stability is related to the eigenvalues of the suscepti-
bility matrix, namely it requires that the eigenvalues be
positive.

The eigenvalues ζ1, ζ2 of the inverse matrix of (12) are
plotted in Figure 3 for the situation of Figures 1a and 1c.
The figure shows clearly how the system becomes unsta-
ble. When the magnetic field goes to its critical value the
eigenvalue ζ2 becomes zero at the critical chemical po-
tential µc. Below the critical magnetic field ζ2 has three
values in a chemical potential region, one of them is nega-
tive, which shows an instability. Meantime the other eigen-
value, ζ1 is positive and barely changes. It demonstrates
clearly, that the stability of the system cannot be deter-
mined by a thermodynamical derivative, but depends on
the eigenvalues of the susceptibility matrix. To determine
the stable phases one has to do a Maxwell construction,
which is carried out in Section 5.

For later purpose we determine the derivative of the
magnetization with respect to the magnetic field at fixed
T and n. Carrying out a calculation similar to the one
that leads to equations (13) one finds:

(
∂m

∂B

)

T,n

= gµB
(P + R)Q + 4PR

P + Q + R + cs[(P + R)Q + 4PR]
.

(15)
As long as the gas is uniform equation (15) is valid without
restriction.
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Fig. 3. Eigenvalues, ζ1, ζ2 of the
inverse of the susceptibility ma-
trix, χ as functions of the chem-
ical potential for several values
of the magnetic field. The figure
is plotted for cn/|cs| ≈ 151.5.

5 Phase transition at constant particle
number

In this section we consider the situation, where the to-
tal particle number is fixed (besides the volume) and the
strength of the magnetic field is varied (lowered from a rel-
atively high starting value). Graphically this means that
we cross the curves of constant magnetic fields with a hor-
izontal line in Figure 1a. As long as the magnetic field is
large enough only one phase exists, which is uniform and
stable. Decreasing the magnetic field the behavior of the
system depends on the value of the fixed n. If n is suf-
ficiently larger or sufficiently smaller than n = n

(id)
c , we

go through points representing stable states. Otherwise
the horizontal line will intersect one or more curves at
points representing metastable or unstable states. Physi-
cally this means that the system does not remain uniform,
there will be two phases in equilibrium with each other
and the fixed n means the average particle density. The
Maxwell construction (keeping the magnetic field fixed)
gives the value of the chemical potential and the particle
densities n1 and n2 of the two phases. The average particle
density can be written in the following form:

n = αn1 + (1 − α)n2, (16)

which determines the parameter α. The densities n1, n2

and the parameter α are functions of n, B and T . Denoting
by mi the magnetization density of the phase with particle
density ni, the average magnetization reads

m = αm1 + (1 − α)m2. (17)

It is interesting to examine first, how the magne-
tization behaves when the temperature is specified
through (9), (10) in such a manner that the prescribed
density is equal to n

(id)
c . With the procedure described

above one can get the magnetization as a function of the
magnetic field. In Figure 4 it is given at different values
of εn. As long as cn/|cs| is finite there are two phases
with different magnetization and the average magnetiza-
tion density is given by equation (17). If cn/|cs| goes to
infinity the system remains homogeneous. Furthermore a
critical point shows up in this limit, where (∂m/∂B)T,n di-
verges [see Eq. (15)]. We denote the temperature by T (c)
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Fig. 4. Magnetization as a function of the magnetic field for
several values of εn at the value of εs = 0.9. The average density

is fixed to n = n
(id)
c .
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Fig. 5. Magnetization as a function of the magnetic field for
several values of the temperature for cn/|cs| → ∞ at fixed
density, n.

for this reason. (Note that to have the location of the
critical point at these parameter settings motivates the
choice of the numerical factor in Eq. (9).) At the critical
point m = m(c) and B = B(c). It can be seen, that the
compressibility vanishes in the limit cn/|cs| → ∞, which
means that the system is rigid, the density is constant and
the dynamical features are determined solely by the dy-
namics of spin degrees of freedom. The system can be also
imagined as if the atoms were localized on some kind of a
“lattice” [15].

In Figure 5 the magnetization is plotted for the
same value of the particle density, n as in Figure 4 for
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cn/|cs| → ∞ at different temperatures. If the temperature
is above the critical value, T (c) the system is uniform.
Below the critical temperature a phase separation takes
place for the magnetization but the particle density re-
mains homogeneous. In this limit one gets back the model
with homogeneous particle density introduced in [19].

6 Spectrum of longitudinal spin fluctuations

The dynamics of the system can be studied with the help
of correlation functions of the following density operators

n(k) =
∑
q,r

a†
r(k + q)ar(q), (18a)

Fz(k) =
∑
q,r,s

(Fz)rsa
†
r(k + q)as(q) (18b)

where n(k) and Fz(k) denotes the particle density oper-
ator and the magnetization density operator. From these
operators one can build correlation functions, which take
the following forms (for k 	= 0):

Dnn(k, τ) = − 〈
Tτ

[
n(k, τ)n†(k, 0)

]〉
, (19a)

Dzz(k, τ) = − 〈
Tτ

[Fz(k, τ)F†
z (k, 0)

]〉
, (19b)

Dnz(k, τ) = − 〈
Tτ

[
n(k, τ)F†

z (k, 0)
]〉

. (19c)

Going over to the Matsubara representation the spectrum
of the collective excitations is given by the analytical con-
tinuation of the correlation functions through the real axis
to the lower half complex plane.

Applying the general theory one finds the relationships
between the correlation functions and the thermodynamic
derivatives

(
∂n

∂µ

)

T,B

= −1
�

lim
k→0

Dnn(k, 0), (20a)

(
∂m

∂B

)

T,µ

= −gµB

�
lim
k→0

Dzz(k, 0), (20b)

(
∂n

∂B

)

T,µ

= −gµB

�
lim
k→0

Dnz(k, 0), (20c)

which represent sum-rules. To be consistent with the ap-
plied mean-field theory we calculate the correlation func-
tions in the Random Phase Approximation. We do not
give the details of the derivation here since the basic struc-
tures remain the same as at B = 0, the situation inves-
tigated in [12]. Namely the polarization contribution has
the same form

Πsr
rs (k, iωn) = −δrs

�

∫
d3q

(2π)3
n′

r(k + q) − n′
r(q)

iωn − �−1(ek+q − eq)
,

(21)
where n′

r is given by equations (6). Note that the mag-
netic field appears only through n′

r. The correlation func-
tions (19) in Matsubara representation can be obtained

formally by the following substitutions in equations (13)

P → −Π++
++ (k, iωn), (22a)

Q → −Π00
00 (k, iωn), (22b)

R → −Π−−
−− (k, iωn). (22c)

The correspondence is also suggested by the sum-
rules (20).

If the following conditions are met:

σr ≡ β [cnn − µ − r(csm − gµBB)] � 1, (23)

kλ � 1, |β�ω| � kλ and |β�ω| � 2
√

σrkλ, then the
contribution of (21) can be approximated as

Πrr
rr (k, ω) = − β

4π2λ3

[√
π

2
F

(
1
2
, σr

)
+ iπ

1
4σr

β�ω

kλ

]
.

(24)
This approximation assumes the frequency to be small,
which is fulfilled sufficiently close to the critical point.

The magnetic transition is connected to longitudinal
spin dynamics, which is however coupled to density fluctu-
ations (as long as cn/cs is finite). The Fourier transform of
the correlation functions (19) have the same denominators
as it follows from equations (13), (20) and the discussion
above. The corresponding spectrum is given by the ze-
roes of this common denominator. In the long wavelength
limit the frequency of the excitation is purely imaginary
and linear in the wavenumber:

ω(k) = −iΓk. (25)

Using Eq. (24) one can obtain the expression of Γ :

Γ = − λ
β�

[1+cn(P+Q+R)][1+cs(P+R)]−cncs(P−R)2

cn(p̂+q̂+r̂)+cncs[q̂(P+R)+Q(p̂+r̂)+4(P r̂+p̂R)]+cs(p̂+r̂)

(26)
where

p̂ =
β

16πλ3

1
σ+

, (27a)

q̂ =
β

16πλ3

1
σ0

, (27b)

r̂ =
β

16πλ3

1
σ−

, (27c)

and P, Q, R are given by equations (14). One can see the
numerator of Γ is equal to the denominator of the suscep-
tibility (13d), so ω(k) becomes soft near the critical point
like in conventional theory.

7 Summary and discussion

We have studied the magnetic properties of the homo-
geneous, ferromagnetic, spin-1 Bose gas above the tem-
perature of BEC in the absence and in the presence of
a magnetic field. The phase diagram of the system was
given in the space of intensive thermodynamical parame-
ters for temperature values higher than that of the BEC
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[Fig. 2]. The tricritical point of the magnetic transition
(µ = µ(1), B = 0, T = T (1)) was numerically estimated
for cn/|cs| ≈ 151.5. Varying the temperature for µ > µ(1)

fixed (or the chemical potential for T > T (1) fixed) there
is a magnetic transition only at B = 0 showing a contin-
uous character, while for µ < µ(1) (or for T < T (1)) the
transition is of first order and survives even in the pres-
ence of a magnetic field up to Bc(µ) (or Bc(T )) which
can be understood as a critical point. We have showed
that the first order magnetic transition is always accom-
panied by a phase separation, i.e. the particle densities
of the coexisting magnetic phases are also different. The
difference between the two densities vanishes in the limit
cn/|cs| → ∞ (rigid limit).

At the critical point Bc(µ) (or Bc(T )) the static and
long wavelength limit of the longitudinal spin correlation
function Dzz(k → 0, 0) diverges, as is expected on gen-
eral grounds. Since in a magnetized phase Dnn and Dzz

hybridize [12] Dnn also diverges in this critical point, re-
sulting in a vertical tangent in the n−µ diagram of a given
isotherm at temperature T and B = Bc(T ) [see Fig. 1a].
The critical magnetic field is higher than that obtained
in the rigid limit [19], indicating that phase separation in
the density drives the system towards phase transition. It
is also interesting to note that in the rigid limit density
fluctuations are suppressed and Dnn(k → 0, 0) is zero.
As a signal of this property one can find an n − µ di-
agram of the nonrigid system for a magnetic field value
smaller than Bc(T ), where the curve has a point with a
horizontal tangent (corresponding to Dnn(k → 0, 0) = 0).
Further decreasing the magnetic field the tangent reaches
positive values inside the unstable region of the isotherm
[see Fig. 1a]. However as the stability analysis shows this
part of the isotherm still remains unstable as ζ2 remains
negative [see Fig. 3].

The investigations performed here become even more
interesting when applied to situations with constant parti-
cle number and magnetic moment. To obtain an isotherm
with prescribed particle number one has to read the value
of the chemical potential from the n−µ diagram of the sys-
tem. When the system is in a state of coexisting phases the
Maxwell construction yields the chemical potential and
the weight of the two phases. The chemical potential thus
determined, the magnetization can be read from the m−µ
isotherm or already yielded by Maxwell construction for
the state of coexisting phases. With such a procedure one
obtains an m−B diagram of the system [Fig. 4]. With the
total magnetization also prescribed one obtains the mag-
nitude of the magnetic field, which, we recall now, is the
addition of the external magnetic field and the Lagrange
multiplier η. The first order transition can be observed
through phase separation in this case.

Furthermore the magnetic phase transition can be ob-
served also through the dynamical properties of the sys-
tem. As shown, the excitation spectrum of the longitudinal
spin fluctuations is a Lorentzian, centered around zero fre-
quency. The full width of half maximum, i.e. equation (26),
vanishes at the critical point showing the character of a
soft mode.

Finally we note that the extension of the Hartree ap-
proximation to the Bose-Einstein condensed phase pro-
vides a consistent description of the dynamics in the whole
temperature region (see [12] for B = 0 and [21] for B 	= 0,
and for the analogous problem in case of the scalar con-
densates [22] and references therein). In particular it re-
produces the well known results at T = 0 [8,9], while it
leads to Landau-type dampings for the collective modes
(including density wave and various spin waves) [12]. The
key point is that a series of diagrams common in the ran-
dom phase approximation are generated in the self ener-
gies from the self-consistent Hartree loop due to the pres-
ence of the condensate.

The present work has been supported by the Hungarian Na-
tional Research Foundation under Grant No. OTKA T046129.
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19. K. Kis-Szabó, P. Szépfalusy, G. Szirmai, Phys. Rev. A

(2005, accepted); e-print arXiv:cond-mat/0410501
20. J.E. Robinson, Phys. Rev. 83, 678 (1951)
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